6=-16t^2+1250

Simple and best practice solution for 6=-16t^2+1250 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6=-16t^2+1250 equation:



6=-16t^2+1250
We move all terms to the left:
6-(-16t^2+1250)=0
We get rid of parentheses
16t^2-1250+6=0
We add all the numbers together, and all the variables
16t^2-1244=0
a = 16; b = 0; c = -1244;
Δ = b2-4ac
Δ = 02-4·16·(-1244)
Δ = 79616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{79616}=\sqrt{256*311}=\sqrt{256}*\sqrt{311}=16\sqrt{311}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{311}}{2*16}=\frac{0-16\sqrt{311}}{32} =-\frac{16\sqrt{311}}{32} =-\frac{\sqrt{311}}{2} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{311}}{2*16}=\frac{0+16\sqrt{311}}{32} =\frac{16\sqrt{311}}{32} =\frac{\sqrt{311}}{2} $

See similar equations:

| 5|x-1|-2=23 | | 4+8b=-124 | | 3x+2=4x+(-4) | | D=1/2h | | w^2=30 | | 10=10-10n | | x6+4=12 | | 3y-7+y=-(y+6y) | | -4a+10=2(-2a+5) | | x/6+4=21 | | 3=a/3+8 | | 42.4*x=549 | | (2x+33)+(5x)=360 | | (2x+33)+(5x)=180 | | n/2-1=-5 | | 6x-5=13x+4x | | 2x+33=5x+180 | | 8-5/7x8=-32 | | 7(4)-4x=8 | | x^2+6x-60=9x-6x​2​​+6x−60=9x−6 | | -2+x/4=-6 | | 3x-5(x-4)=-8+3x-7 | | 10f+2(2f-9)=6f-(8f-10) | | -2x+7x+5=-2+5x+8 | | 5h^2-30h+40=0 | | -14=5v+6 | | 9-(8y+4)=16+3y | | -168=10v+2 | | (2.33x10^27)((1.3-3x)^3)((3.6-2x)^2)=(4x)^4 | | -1/3p+7=-29 | | 8^-x+3=95 | | x/200=1/5 |

Equations solver categories